
Package: funGp (via r-universe)
August 25, 2024

Type Package

Title Gaussian Process Models for Scalar and Functional Inputs

Version 1.0.0

Maintainer Jose Betancourt <fungp.rpack@gmail.com>

Description Construction and smart selection of Gaussian process
models for analysis of computer experiments with emphasis on
treatment of functional inputs that are regularly sampled. This
package offers: (i) flexible modeling of functional-input
regression problems through the fairly general Gaussian process
model; (ii) built-in dimension reduction for functional inputs;
(iii) heuristic optimization of the structural parameters of
the model (e.g., active inputs, kernel function, type of
distance). An in-depth tutorial in the use of funGp is provided
in Betancourt et al. (2024) <doi:10.18637/jss.v109.i05> and
Metamodeling background is provided in Betancourt et al. (2020)
<doi:10.1016/j.ress.2020.106870>. The algorithm for structural
parameter optimization is described in
<https://hal.science/hal-02532713>.

Note research product of the RISCOPE project (ANR, project
No.16CE04-0011) <https://perso.math.univ-toulouse.fr/riscope/>.

License GPL-3

URL https://djbetancourt-gh.github.io/funGp/,

https://github.com/djbetancourt-gh/funGp

BugReports https://github.com/djbetancourt-gh/funGp/issues

Depends R (>= 3.5.0)

Imports methods, foreach, knitr, scales, microbenchmark, doFuture,
doRNG, future, progressr

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

1

https://doi.org/10.18637/jss.v109.i05
https://doi.org/10.1016/j.ress.2020.106870
https://hal.science/hal-02532713
https://djbetancourt-gh.github.io/funGp/
https://github.com/djbetancourt-gh/funGp
https://github.com/djbetancourt-gh/funGp/issues

2 Contents

Collate '0_funGp_Doc.R' '0_show_Doc.R' '0_summary_Doc.R'
'8_outilsCode.R' '3_ant_admin.R' '2_fgpKern_Class.R'
'2_fgpProj_Class.R' '1_fgpm_Class.R' '1_Xfgpm_Class.R'
'3_ant_search.R' '3_training_F.R' '3_training_S.R'
'3_training_SF.R' '4_prediction_F.R' '4_prediction_S.R'
'4_prediction_SF.R' '5_simulation_F.R' '5_simulation_S.R'
'5_simulation_SF.R' '6_updating.R' '7_blackBoxFunctions.R'
'7_checkingFunctions.R' '7_correlFunctions.R'
'7_dimRedFunctions.R' '7_distanceFunctions.R'
'7_plottingFunctions.R' '7_plottingFunctionsStandard.R'
'8_outilsStats.R' '8_precalculated_Xfgpm_objects.R'

Repository https://djbetancourt-gh.r-universe.dev

RemoteUrl https://github.com/djbetancourt-gh/fungp

RemoteRef HEAD

RemoteSha 1cf8c4974cceb272d45f69a87a6abc8488718f9f

Contents
funGp-package . 3
antsLog-class . 4
black-boxes . 5
decay . 7
decay2probs . 9
factoryCall-class . 11
fgpKern-class . 11
fgpm . 12
fgpm-class . 18
fgpm_factory . 20
fgpProj-class . 27
get_active_in . 27
modelCall-class . 31
modelDef . 31
plot,fgpm-method . 33
plot,Xfgpm-method . 34
plot.predict.fgpm . 36
plot.simulate.fgpm . 38
precalculated_Xfgpm_objects . 40
predict,fgpm-method . 42
simulate,fgpm-method . 44
summary,fgpm-method . 47
summary,Xfgpm-method . 48
update,fgpm-method . 49
which_on . 53
Xfgpm-class . 55
[[,Xfgpm-method . 56

Index 58

funGp-package 3

funGp-package Gaussian Process Models for Scalar and Functional Inputs

Description

Construction and smart selection of Gaussian process models for analysis of computer experiments
with emphasis on treatment of functional inputs that are regularly sampled. Smart selection is based
on Ant Colony Optimization ACO algorithm.

Base functionalities

• Main methods
fgpm: creation of funGp regression models
predict,fgpm-method: output estimation at new input points based on a funGp model
simulate,fgpm-method: random sampling from a funGp Gaussian process model
update,fgpm-method: modification of data and hyperparameters of a funGp model

• Plotters
plot,fgpm-method: validation plot for a fgpm model
plot.predict.fgpm: plot of predictions based on a fgpm model
plot.simulate.fgpm: plot of simulations based on a fgpm model

Model selection

• Main method
fgpm_factory: structural parameter optimization

• Functions for pre-optimization
decay: regularized initial pheromones
decay2probs: normalized initial pheromones

• Plotters post-optimization
plot,Xfgpm-method: plot of the evolution of the algorithm with which = "evolution" or of
the absolute and relative quality of the optimized model with which = "diag"

• Correction post-optimization of input data structures
which_on: indices of active inputs in a model structure delivered by fgpm_factory
get_active_in: extraction of active input data based on a model structure delivered by fgpm_factory

Useful material

• Manual: funGp: An R Package for Gaussian Process Regression with Scalar and Functional
Inputs (doi:10.18637/jss.v109.i05)

• Paper: - Gaussian process metamodeling of functional-input code for coastal flood hazard
assessment (doi:10.1016/j.ress.2020.106870)

• Tech. report: Ant Colony Based Model Selection for Functional-Input Gaussian Process
Regression (https://hal.science/hal-02532713)

https://doi.org/10.18637/jss.v109.i05
https://doi.org/10.1016/j.ress.2020.106870
https://hal.science/hal-02532713

4 antsLog-class

Authors

José Betancourt, François Bachoc and Thierry Klein

Contributors

Déborah Idier and Jérémy Rohmer

Note

This package was first developed in the frame of the RISCOPE research project, funded by the
French Agence Nationale de la Recherche (ANR) for the period 2017-2021 (ANR, project No.
16CE04-0011, RISCOPE.fr), and certified by SAFE Cluster.

Author(s)

Maintainer: Jose Betancourt <fungp.rpack@gmail.com>

Authors:

• François Bachoc <francois.bachoc@math.univ-toulouse.fr>

• Thierry Klein <thierry.klein@math.univ-toulouse.fr>

• Jeremy Rohmer <J.Rohmer@brgm.fr>

Other contributors:

• Yves Deville <deville.yves@alpestat.com> [contributor]

• Deborah Idier <D.Idier@brgm.fr> [contributor]

See Also

Useful links:

• https://djbetancourt-gh.github.io/funGp/

• https://github.com/djbetancourt-gh/funGp

• Report bugs at https://github.com/djbetancourt-gh/funGp/issues

antsLog-class S4 class for log of models explored by ant colony in funGp

Description

Register of model structures and their performance statistics, if available.

https://perso.math.univ-toulouse.fr/riscope/
https://djbetancourt-gh.github.io/funGp/
https://github.com/djbetancourt-gh/funGp
https://github.com/djbetancourt-gh/funGp/issues

black-boxes 5

Slots

sols Object of class "data.frame". Compendium of model structures arranged by rows. Each
column is linked to one structural parameter of the model such as the state of one variable
(inactive, active) or the type of kernel function.

args Object of class "list". Compendium of model structures represented by objects of class
"modelCall".

fitness Object of class "numeric". Performance statistic of each model, if available.

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

black-boxes Analytic models for the exploration of the funGp package

Description

Set of analytic functions that take functional variables as inputs. Since they run quickly, they can
be used for testing of funGp functionalities as if they were black box computer models. They
cover different situations (number of scalar inputs and complexity of the inputs-output mathematical
relationship).

Usage

fgp_BB1(sIn, fIn, n.tr)

fgp_BB2(sIn, fIn, n.tr)

fgp_BB3(sIn, fIn, n.tr)

fgp_BB4(sIn, fIn, n.tr)

fgp_BB5(sIn, fIn, n.tr)

fgp_BB6(sIn, fIn, n.tr)

fgp_BB7(sIn, fIn, n.tr)

Arguments

sIn Object with class "matrix". The scalar input points. Variables are arranged by
columns and coordinates by rows.

fIn Object with class "list". The functional inputs. Each element of the list must
be a matrix containing the set of curves corresponding to one functional input.

n.tr Object with class "numeric". The number of input points provided and corre-
spondingly, the number of observations to produce.

6 black-boxes

Details

For all the functions, the ds scalar inputs xi are in the real interval [0, 1] and the df functional inputs
fi(ti) are defined on the interval [0, 1]. Expressions for the values are as follows.

• fgp_BB1 With ds = 2 df = 2

x1 * sin(x2) + x1 * mean(f1) - x2^2 * diff(range(f2))

• fgp_BB2 With ds = 2 and df = 2

x1 * sin(x2) + mean(exp(x1 * t1) * f1) - x2^2 * mean(f2^2 * t2)

• fgp_BB3 With ds = 2 and df = 2 is the first analytical example in Muehlenstaedt et al (2017)

x1 + 2 * x2 + 4 * mean(t1 * f1) + mean(f2)

• fgp_BB4 With ds = 2 and df = 2 is the second analytical example in preprint of Muehlen-
staedt et al (2017)

(x2 - (5 / (4 * pi^2)) * x1^2 + (5 / pi) * x1 - 6)^2 +
10 * (1 - (1 / (8 * pi))) * cos(x1) + 10 +
(4 / 3) * pi * (42 * mean(f1 * (1 - t1)) +

pi * ((x1 + 5) / 5) + 15) * mean(t2 * f2))

• fgp_BB5 With ds = 2 and df = 2 is inspired by the second analytical example in final version
of Muehlenstaedt et al (2017)

(x2 - (5 / (4 * pi^2)) * x1^2 + (5 / pi) * x1 - 6)^2 +
10 * (1 - (1 / (8 * pi))) * cos(x1) + 10 +
(4 / 3) * pi * (42 * mean(15 * f1 * (1 - t1) - 5) +

pi * ((x1 + 5) / 5) + 15) * mean(15 * t2 * f2))

• fgp_BB6 With ds = 2 and df = 2 is inspired by the analytical example in Nanty et al (2016)

2 * x1^2 + 2 * mean(f1 + t1) + 2 * mean(f2 + t2) + max(f2) + x2

• fgp_BB7 With ds = 5 and df = 2 is inspired by the second analytical example in final version
of Muehlenstaedt et al (2017)

(x2 + 4 * x3 - (5 / (4 * pi^2)) * x1^2 + (5 / pi) * x1 - 6)^2 +
10 * (1 - (1 / (8 * pi))) * cos(x1) * x2^2 * x5^3 + 10 +
(4 / 3) * pi * (42 * sin(x4) * mean(15 * f1 * (1 - t1) - 5) +

pi * (((x1 * x5 + 5) / 5) + 15) * mean(15 * t2 * f2))

Value

An object of class "matrix" with the values of the output at the specified input coordinates.

Note

The functions listed above were used to validate the functionality and stability of this package.
Several tests involving all main functions, plotters and getters were run for scalar-input, functional-
input and hybrid-input models. In all cases, the output of the functions were correct from the
statistical and programmatic perspectives. For an example on the kind of tests performed, the
interested user is referred to the introductory funGp manual (doi:10.18637/jss.v109.i05).

https://doi.org/10.18637/jss.v109.i05

decay 7

References

Muehlenstaedt, T., Fruth, J., and Roustant, O. (2017), "Computer experiments with functional in-
puts and scalar outputs by a norm-based approach". Statistics and Computing, 27, 1083-1097. [SC]

Nanty, S., Helbert, C., Marrel, A., Pérot, N., and Prieur, C. (2016), "Sampling, metamodeling, and
sensitivity analysis of numerical simulators with functional stochastic inputs". SIAM/ASA Journal
on Uncertainty Quantification, 4(1), 636-659. doi:10.1137/15M1033319

decay Decay functions for ant colony optimization in funGp

Description

This function is intended to aid the selection of the heuristic parameters tao0, delta and dispr in the
call to the model selection function fgpm_factory. The values computed by decay are the ones that
would be used by the ant colony algorithm as initial pheromone load of the links pointing out to
projection on each dimension. For more details, check the technical report explaining the ant colony
algorithm implemented in funGp, and the manual of the package (doi:10.18637/jss.v109.i05).

Usage

decay(
k,
pmax = NULL,
tao0 = 0.1,
delta = 2,
dispr = 1.4,
doplot = TRUE,
deliver = FALSE

)

Arguments

k A number indicating the dimension of the functional input under analysis.

pmax An optional number specifying the hypothetical maximum projection dimen-
sion of this input. The user will be able to set this value later in the call to
fgpm_factory as a constraint. If not specified, it takes the value of k.

tao0 Explained in the description of dispr.

delta Explained in the description of dispr.

dispr The arguments tao0, delta and dispr, are optional numbers specifying the loss
function that determines the initial pheromone load on the links pointing out to
projection dimensions. Such a function is defined as

tao = tao0 ∗ exp(−.5 ∗ ((p− delta− 1)2/(−dispr2/(2 ∗ log(.5)),

with p taking the values of the projection dimensions. The argument tao0 indi-
cates the pheromone load in the links pointing out to the smallest dimensions;

https://link.springer.com/article/10.1007/s11222-016-9672-z
https://doi.org/10.1137/15M1033319
https://hal.science/hal-02532713
https://doi.org/10.18637/jss.v109.i05

8 decay

delta specifies how many dimensions should preserve the maximum pheromone
load; dispr determines how fast the pheromone load drops in dimensions further
than delta + 1. If pmax = k, then the dimension 0, representing no projection,
receives a pheromone load identical to that of dimension k. This, in order to
represent the fact that both the representation of the function in its original di-
mension or a projection in a space of the same dimension, are equally heavy
for the model. The default values of tao0, delta and dispr, are 0.1, 2 and 1.4,
respectively, which match the default values used by the fgpm_factory function.
Check this technical report for more details.

doplot An optional boolean indicating if the pheromone loads should be plotted. De-
fault = TRUE.

deliver An optional boolean indicating if the pheromone loads should be returned. De-
fault = FALSE.

Value

If deliver is TRUE, an object of class "numeric" containing the initial pheromone values corre-
sponding to the specified projection dimensions. Otherwise, the function plots the pheromones and
nothing is returned.

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

See Also

* decay2probs for the function to generate the initial probability load;

* fgpm_factory for heuristic funGp model selection.

Examples

using default decay arguments__
input of dimension 15 projected maximum in dimension 15
decay(15)

input of dimension 15 projected maximum in dimension 8
decay(15, 8)

playing with decay arguments___
input of dimension 15 projected maximum in dimension 15
decay(15)

using a larger value of tao0
decay(15, tao0 = .3)

using a larger value of tao0, keeping it fixed up to higher dimensions
decay(15, tao0 = .3, delta = 5)

using a larger value of tao0, keeping it fixed up to higher dimensions, with slower decay

https://hal.science/hal-02532713

decay2probs 9

decay(15, tao0 = .3, delta = 5, dispr = 5.2)

requesting pheromone values__
input of dimension 15 projected maximum in dimension 15
decay(15, deliver = TRUE)

decay2probs Probability functions for ant colony optimization in funGp

Description

This function is intended to aid the selection of the heuristic parameters tao0, delta and dispr in the
call to the model selection function fgpm_factory. The values computed by decay2probs are the
ones that would be used by the ant colony algorithm as probability load of the links pointing out to
projection on each dimension. These values result from the normalization of the initial pheromone
loads delivered by the decay function, which are made to sum 1. For more details, check the
technical report explaining the ant colony algorithm implemented in funGp, and the manual of the
package (doi:10.18637/jss.v109.i05).

Usage

decay2probs(
k,
pmax = NULL,
tao0 = 0.1,
delta = 2,
dispr = 1.4,
doplot = TRUE,
deliver = FALSE

)

Arguments

k A number indicating the dimension of the functional input under analysis.

pmax An optional number specifying the hypothetical maximum projection dimen-
sion of this input. The user will be able to set this value later in the call to
fgpm_factory as a constraint. If not specified, it takes the value of k.

tao0 Explained in the description of dispr.

delta Explained in the description of dispr.

dispr The arguments tao0, delta and dispr, are optional numbers specifying the loss
function that determines the initial pheromone load on the links pointing out to
projection dimensions. Such a function is defined as

tao = tao0 ∗ exp(−.5 ∗ ((p− delta− 1)2/(−dispr2/(2 ∗ log(.5)),

https://hal.science/hal-02532713
https://doi.org/10.18637/jss.v109.i05

10 decay2probs

with p taking the values of the projection dimensions. The argument tao0 indi-
cates the pheromone load in the links pointing out to the smallest dimensions;
delta specifies how many dimensions should preserve the maximum pheromone
load; dispr determines how fast the pheromone load drops in dimensions further
than delta + 1. If pmax = k, then the dimension 0, representing no projection,
receives a pheromone load identical to that of dimension k. This, in order to
represent the fact that both the representation of the function in its original di-
mension or a projection in a space of the same dimension, are equally heavy for
the model. In order to obtain the probability loads, the initial pheromone values
are normalized to sum 1. Note that the normalization makes the value of tao0
become irrelevant in the initial probability load. This does not mean that the
effect of tao0 is completely removed from the algorithm. Despite the fact that
tao0 does not have influence on the selection of the projection dimension during
the first iteration, it will be protagonist during the global pheromone update and
will have an impact on every further iteration. The argument tao0 is left active in
the input just for a better comprehension of the functioning of the mechanisms
defining the initial pheromone and probability loads. The default values of tao0,
delta and dispr, are 0.1, 2 and 1.4, respectively, which match the default values
used by the fgpm_factory function. Check this technical report for more details.

doplot An optional boolean indicating if the probability loads should be plotted. De-
fault = TRUE.

deliver An optional boolean indicating if the probability loads should be returned. De-
fault = FALSE.

Value

If deliver is TRUE, an object of class "numeric" containing the normalized initial pheromone values
corresponding to the specified projection dimensions. Otherwise, the function plots the normalized
pheromones and nothing is returned.

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

See Also

* decay for the function to generate the initial pheromone load;

* fgpm_factory for heuristic model selection in funGp.

Examples

using default decay arguments__
input of dimension 15 projected maximum in dimension 15
decay(15) # initial pheromone load
decay2probs(15) # initial probability load

input of dimension 15 projected maximum in dimension 8
decay(15, 8) # initial pheromone load
decay2probs(15, 8) # initial probability load

https://hal.science/hal-02532713

factoryCall-class 11

playing with decay2probs arguments___
varying the initial pheromone load
decay(15) # input of dimension 15 projected maximum in dimension 15
decay(15, tao0 = .3) # larger value of tao0
decay(15, tao0 = .3, delta = 5) # larger tao0 kept to higher dimensions
decay(15, tao0 = .3, delta = 5, dispr = 5.2) # larger tao0 kept to higher dimensions

and slower decay

varying the initial probability load
decay2probs(15) # input of dimension 15 projected maximum in dimension 15
decay2probs(15, tao0 = .3) # larger value of tao0 (no effect whatsoever)
decay2probs(15, tao0 = .3, delta = 5) # larger tao0 kept to higher dimensions
decay2probs(15, tao0 = .3, delta = 5, dispr = 5.2) # larger tao0 kept to higher dimensions

and slower decay

requesting probability values__
input of dimension 15 projected maximum in dimension 15
decay2probs(15, deliver = TRUE)

factoryCall-class S4 class for fgpm_factory function calls

Description

User reminder of the fgpm function call.

Slots

string Object of class "character". User call reminder in string format.

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

fgpKern-class S4 class for structures linked to the kernel of a fgpm model

Description

This is the formal representation for data structures linked to the kernel of a Gaussian process model
within the funGp package.

12 fgpm

Slots

kerType Object of class "character". Kernel type. To be set from {"gauss", "matern5_2",
"matern3_2"}.

f_disType Object of class "character". Distance type. To be set from {"L2_bygroup", "L2_index"}.

varHyp Object of class "numeric". Estimated variance parameter.

s_lsHyps Object of class "numeric". Estimated length-scale parameters for scalar inputs.

f_lsHyps Object of class "numeric". Estimated length-scale parameters for functional inputs.

f_lsOwners Object of class "character". Index of functional input variable linked to each ele-
ment in f_lsHyps

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

fgpm Gaussian process models for scalar and functional inputs

Description

This function enables fitting of Gaussian process regression models. The inputs can be either scalar,
functional or a combination of both types.

Usage

fgpm(
sIn = NULL,
fIn = NULL,
sOut,
kerType = "matern5_2",
f_disType = "L2_bygroup",
f_pdims = 3,
f_basType = "B-splines",
var.hyp = NULL,
ls_s.hyp = NULL,
ls_f.hyp = NULL,
nugget = 1e-08,
n.starts = 1,
n.presample = 20,
par.clust = NULL,
trace = TRUE,
pbars = TRUE,
control.optim = list(trace = TRUE),
...

)

fgpm 13

Arguments

sIn An optional matrix of scalar input values to train the model. Each column must
match an input variable and each row a training point. Either scalar input coor-
dinates (sIn), functional input coordinates (fIn), or both must be provided.

fIn An optional list of functional input values to train the model. Each element of the
list must be a matrix containing the set of curves corresponding to one functional
input. Either scalar input coordinates (sIn), functional input coordinates (fIn),
or both must be provided.

sOut A vector (or 1-column matrix) containing the values of the scalar output at the
specified input points.

kerType An optional character string specifying the covariance structure to be used. To be
chosen between "gauss", "matern5_2" and "matern3_2". Default is "matern5_2".

f_disType An optional array of character strings specifying the distance function to be
used for each functional coordinates within the covariance function of the Gaus-
sian process. To be chosen between "L2_bygroup" and "L2_byindex". The
L2_bygroup distance considers each curve as a whole and uses a single length-
scale parameter per functional input variable. The L2_byindex distance uses as
many length-scale parameters per functional input as discretization points it has.
For instance an input discretized as a vector of size 8 will use 8 length-scale pa-
rameters when using L2_byindex. If dimension reduction of a functional input
is requested, then L2_byindex uses as many length scale parameters as effective
dimensions used to represent the input. A single character string can also be
passed as a general selection for all the functional inputs of the model. More de-
tails in the reference article (doi:10.1016/j.ress.2020.106870) and the in-depth
package manual (doi:10.18637/jss.v109.i05). Default is "L2_bygroup".

f_pdims An optional array with the projection dimension for each functional input. For
each input, the projection dimension should be an integer between 0 and its
original dimension, with 0 denoting no projection. A single character string can
also be passed as a general selection for all the functional inputs of the model.
Default is 3.

f_basType An optional array of character strings specifying the family of basis functions
to be used in the projection of each functional input. To be chosen between
"B-splines" and "PCA". A single character string can also be passed as a gen-
eral selection for all the functional inputs of the model. This argument will be
ignored for those inputs for which no projection was requested (i.e., for which
f_pdims = 0). Default is "B-splines".

var.hyp An optional number indicating the value that should be used as the variance
parameter of the model. If not provided, it is estimated through likelihood max-
imization.

ls_s.hyp An optional numeric array indicating the values that should be used as length-
scale parameters for the scalar inputs. If provided, the size of the array should
match the number of scalar inputs. If not provided, these parameters are esti-
mated through likelihood maximization.

ls_f.hyp An optional numeric array indicating the values that should be used as length-
scale parameters for the functional inputs. If provided, the size of the array

https://doi.org/10.1016/j.ress.2020.106870
https://doi.org/10.18637/jss.v109.i05

14 fgpm

should match the number of effective dimensions. Each input using the "L2_bygroup"
distance will count 1 effective dimension, and each input using the "L2_byindex"
distance will count as many effective dimensions as specified by the corre-
sponding element of the f_pdims argument. For instance, two functional inputs
of original dimensions 10 and 22, the first one projected onto a space of di-
mension 5 with "L2_byindex" distance, and the second one not projected with
"L2_bygroup" distance will make up a total of 6 effective dimensions; five for
the first functional input and one for second one. If this argument is not pro-
vided, the functional length-scale parameters are estimated through likelihood
maximization.

nugget An optional variance value standing for the homogeneous nugget effect. A tiny
nugget might help to overcome numerical problems related to the ill-conditioning
of the covariance matrix. Default is 1e-8.

n.starts An optional integer indicating the number of initial points to use for the opti-
mization of the hyperparameters. A parallel processing cluster can be exploited
in order to speed up the evaluation of multiple initial points. More details in the
description of the argument par.clust below. Default is 1.

n.presample An optional integer indicating the number of points to be tested in order to se-
lect the n.starts initial points. The n.presample points will be randomly sampled
from the hyper-rectangle defined by:

1e-10 ≤ ls_s.hyp[i] ≤ 2*max(sMs[[i]]), for i in 1 to the number of scalar
inputs,
1e-10 ≤ ls_f.hyp[i] ≤ 2*max(fMs[[i]]), for i in 1 to the number of func-
tional inputs,

with sMs and fMs the lists of distance matrices for the scalar and functional
inputs, respectively. The value of n.starts will be assigned to n.presample if this
last is smaller. Default is 20.

par.clust An optional parallel processing cluster created with the makeCluster function
of the parallel package. If not provided, multistart optimizations are done in
sequence.

trace An optional boolean indicating if control messages native of the funGp pack-
age should be printed to console. Default is TRUE. For complementary control
on the display of funGp-native progress bars and optim trace about the hyper-
parameter optimization process, have a look at the pbars and control.optim
arguments, respectively.

pbars An optional boolean indicating if progress bars should be displayed. Default is
TRUE.

control.optim An optional list to be passed as the control argument to optim, the function
in charge of the non-linear optimization of the hyperparameters. Default is
list(trace = TRUE), equivalent to list(trace = 1), which enables the print-
ing of tracing information on the progress of the optimization. Before interact-
ing with the fgpm() control.optim argument, please carefully check the doc-
umentation about the control argument provided in optim to ensure a coherent
behavior and sound results. Note that: (i) at this time, only the "L-BFGS-B"
method (Byrd et. al., 1995) is enabled in fgpm(); (ii) control.optim$fnscale

fgpm 15

should not be used since our optimization problem is strictly of minimization,
not maximization.

... Extra control parameters. Currently only used internally for some update()
calls.

Value

An object of class fgpm containing the data structures representing the fitted funGp model.

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

References

Betancourt, J., Bachoc, F., Klein, T., Idier, D., Rohmer, J., and Deville, Y. (2024), "funGp: An R
Package for Gaussian Process Regression with Scalar and Functional Inputs". Journal of Statistical
Software, 109, 5, 1–51. (doi:10.18637/jss.v109.i05)

Betancourt, J., Bachoc, F., Klein, T., Idier, D., Pedreros, R., and Rohmer, J. (2020), "Gaussian
process metamodeling of functional-input code for coastal flood hazard assessment". Reliability
Engineering & System Safety, 198, 106870. (doi:10.1016/j.ress.2020.106870) [HAL]

Betancourt, J., Bachoc, F., Klein, T., and Gamboa, F. (2020), Technical Report: "Ant Colony
Based Model Selection for Functional-Input Gaussian Process Regression. Ref. D3.b (WP3.2)".
RISCOPE project. [HAL]

Betancourt, J., Bachoc, F., and Klein, T. (2020), R Package Manual: "Gaussian Process Regression
for Scalar and Functional Inputs with funGp - The in-depth tour". RISCOPE project. [HAL]

See Also

* plot,fgpm-method: validation plot for a fgpm model;

* predict,fgpm-method for predictions based on a fgpm model;

* simulate,fgpm-method for simulations based on a fgpm model;

* update,fgpm-method for post-creation updates on a fgpm model;

* fgpm_factory for funGp heuristic model selection.

Examples

creating funGp model using default fgpm arguments__
generating input data for training
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))

generating output data for training
sOut <- fgp_BB3(sIn, fIn, n.tr)

building a scalar-input funGp model

https://doi.org/10.18637/jss.v109.i05
https://doi.org/10.1016/j.ress.2020.106870
https://hal.science/hal-01998724
https://hal.science/hal-02532713
https://hal.science/hal-02536624

16 fgpm

ms <- fgpm(sIn = sIn, sOut = sOut)

building a functional-input funGp model
mf <- fgpm(fIn = fIn, sOut = sOut)

building a hybrid-input funGp model
msf <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

plotting the three models
plot(ms)
plot(mf)
plot(msf)

printing the three models
summary(ms) # equivalent to show(ms)
summary(mf) # equivalent to show(mf)
summary(msf) # equivalent to show(msf)

recovering useful information from a funGp model___
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

recovering data from model slots
m1@f_proj@coefs # list of projection coefficients for the functional inputs
m1@f_proj@basis # list of projection basis functions for the functional inputs
Map(function(a, b) a %*% t(b), m1@f_proj@coefs, m1@f_proj@basis) # list of projected

functional inputs
tcrossprod(m1@preMats$L) # training auto-covariance matrix

making predictions based on a funGp model__
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

generating input data for prediction
n.pr <- 100
sIn.pr <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.pr)),

x2 = seq(0,1,length = sqrt(n.pr))))
fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10), matrix(runif(n.pr*22), ncol = 22))

making predictions
m1.preds <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr)

fgpm 17

plotting predictions
plot(m1.preds)

simulating from a funGp model__
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

generating input data for simulation
n.sm <- 100
sIn.sm <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.sm)),

x2 = seq(0,1,length = sqrt(n.sm))))
fIn.sm <- list(f1 = matrix(runif(n.sm*10), ncol = 10), matrix(runif(n.sm*22), ncol = 22))

making simulations
m1.sims <- simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm)

plotting simulations
plot(m1.sims)

creating funGp model using custom fgpm arguments___
generating input and output data
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)

original dimensions
f1: 10
f2: 22

building a the model with the following structure
- Kernel: Gaussian
- f1: L2_byindex distance, no projection -> 10 length-scale parameters
- f2: L2_bygroup distance, B-spline basis of dimension 5 -> 1 length-scale parameter
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut,

kerType = "gauss", f_disType = c("L2_byindex", "L2_bygroup"),
f_pdims = c(0,5), f_basType = c(NA, "B-splines"))

plotting the model
plot(m1)

printing the model
m1 # equivalent to show(m1)

18 fgpm-class

Not run:
multistart and parallelization in fgpm___
generating input and output data
set.seed(100)
n.tr <- 243
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)

calling fgpm with multistart in parallel
cl <- parallel::makeCluster(2)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, n.starts = 10, par.clust = cl) # (~14 seconds)
parallel::stopCluster(cl)

NOTE: in order to provide progress bars for the monitoring of time consuming processes
ran in parallel, funGp relies on the doFuture and future packages. Parallel processes
suddenly interrupted by the user tend to leave corrupt connections. This problem is
originated outside funGp, which limits our control over it. In the initial (unpublished)
version of the funGp manual, we provide a temporary solution to the issue and we remain
attentive in case it appears a more elegant way to handle it or a manner to suppress it.
#
funGp original (unpublished) manual: https://hal.science/hal-02536624

End(Not run)

fgpm-class S4 class for funGp Gaussian process models

Description

This is the formal representation of Gaussian process models within the funGp package. Gaussian
process models are useful statistical tools in the modeling of complex input-output relationships.

• Main methods
fgpm: creation of funGp regression models
predict,fgpm-method: output estimation at new input points based on a fgpm model
simulate,fgpm-method: random sampling from a fgpm model
update,fgpm-method: modification of data and hyperparameters of a fgpm model

• Plotters
plot,fgpm-method: validation plot for a fgpm model
plot.predict.fgpm: plot of predictions based on a fgpm model
plot.simulate.fgpm: plot of simulations based on a fgpm model

Slots

howCalled Object of class "modelCall". User call reminder.

fgpm-class 19

type Object of class "character". Type of model based on type of inputs. To be set from
{"scalar", "functional", "hybrid"}.

ds Object of class "numeric". Number of scalar inputs.

df Object of class "numeric". Number of functional inputs.

f_dims Object of class "numeric". An array with the original dimension of each functional input.

sIn Object of class "matrix". The scalar input points. Variables are arranged by columns and
coordinates by rows.

fIn Object of class "list". The functional input points. Each element of the list contains a func-
tional input in the form of a matrix. In each matrix, curves representing functional coordinates
are arranged by rows.

sOut Object of class "matrix". The scalar output values at the coordinates specified by sIn and/or
fIn.

n.tot Object of class "integer". Number of observed points used to compute the training-
training and training-prediction covariance matrices.

n.tr Object of class "integer". Among all the points loaded in the model, the amount used for
training.

f_proj Object of class "fgpProj". Data structures related to the projection of functional inputs.
Check fgpProj for more details.

kern Object of class "fgpKern". Data structures related to the kernel of the Gaussian process
model. Check fgpKern for more details.

nugget Object of class "numeric". Variance parameter standing for the homogeneous nugget
effect.

preMats Object of class "list". L and LInvY matrices pre-computed for prediction. L is a lower
diagonal matrix such that L′L equals the training auto-covariance matrix K.tt. On the other
hand, LInvY = L(− 1) ∗ sOut.

convergence Object of class "numeric". Integer code either confirming convergence or indicating
an error. Check the convergence component of the Value returned by optim.

negLogLik Object of class "numeric". Negated log-likelihood obained by optim during hyperpa-
rameter optimization.

Useful material

• Manual: funGp: An R Package for Gaussian Process Regression with Scalar and Functional
Inputs (doi:10.18637/jss.v109.i05)

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

https://doi.org/10.18637/jss.v109.i05

20 fgpm_factory

fgpm_factory Structural optimization of Gaussian process models

Description

This function enables the smart exploration of the solution space of potential structural configu-
rations of a funGp model, and the consequent selection of a high quality configuration. funGp
currently relies on an ant colony based algorithm to perform this task. The algorithm defines the
solution space based on the levels of each structural parameter currently available in the fgpm
function, and performs a smart exploration of it. More details on the algorithm are provided in a
dedicated technical report. funGp might evolve in the future to include improvements in the current
algorithm or alternative solution methods.

Usage

fgpm_factory(
sIn = NULL,
fIn = NULL,
sOut = NULL,
ind.vl = NULL,
ctraints = list(),
setup = list(),
time.lim = Inf,
nugget = 1e-08,
n.starts = 1,
n.presample = 20,
par.clust = NULL,
trace = TRUE,
pbars = interactive()

)

Arguments

sIn An optional matrix of scalar input values to train the model. Each column must
match an input variable and each row a training point. Either scalar input coor-
dinates (sIn), functional input coordinates (fIn), or both must be provided.

fIn An optional list of functional input values to train the model. Each element of the
list must be a matrix containing the set of curves corresponding to one functional
input. Either scalar input coordinates (sIn), functional input coordinates (fIn),
or both must be provided.

sOut A vector (or 1-column matrix) containing the values of the scalar output at the
specified input points.

ind.vl An optional numerical matrix specifying which points in the three structures
above should be used for training and which for validation. If provided, the
optimization will be conducted in terms of the hold-out coefficient of determi-
nation Q², which comes from training the model with a subset of the points,

https://hal.science/hal-02532713

fgpm_factory 21

and then estimating the prediction error in the remaining points. In that case,
each column of ind.vl will be interpreted as one validation set, and the multiple
columns will imply replicates. In the simplest case, ind.vl will be a one-column
matrix or simply an array, meaning that a simple replicate should be used for
each model configuration explored. If not provided, the optimization will be
conducted in terms of the leave-one-out cross-validation Q², which for a total
number of n observations, comes from training the model n times, each using
n-1 points for training and the remaining one for validation. This procedure is
typically costly due to the large number of hyperparameter optimizations that
should be conducted, nonetheless, fgpm_factory implements the virtual equa-
tions introduced by Dubrule (1983) for Gaussian processes, which require a
single hyperparameter optimization. See the reference below for more details.

ctraints An optional list specifying the constraints of the structural optimization prob-
lem. Valid entries for this list are:

*s_keepOn: a numerical array indicating the scalar inputs that should remain
active in the model. It should contain the indices of the columns of sIn corre-
sponding to the inputs to keep active.

*f_keepOn: a numerical array indicating the functional inputs that should re-
main active in the model. It should contain the indices of the elements of fIn
corresponding to the inputs to keep active.

*f_disTypes: a list specifying the set of distances that should be tested for some
functional inputs. The values should be taken from the possibilities offered by
the fgpm function for the argument f_disType therein. Valid choices at this time
are "L2_bygroup" and "L2_byindex". Each element of the list should receive
as name the index of a functional input variable, and should contain an array of
strings with the name of the distances allowed for this input. All the available
distances will be tried for any functional input not included in the list.

*f_fixDims: a two-row matrix specifying a particular projection dimension for
some functional inputs. For each input, the value should be a number between
0 and its original dimension, with 0 denoting no projection. The first row of the
matrix should contain the index of each input, and the second row should contain
the corresponding dimensions. All the possible dimensions will be tried for any
functional input not included in the matrix (unless affected by the f_maxDims
argument below).

*f_maxDims: a two-row matrix specifying the largest projection dimension for
some functional inputs. For each input, the value should be a number between 1
and its original dimension. The first row of the matrix should contain the index
of each input, and the second row should contain the corresponding largest di-
mensions. All the possible dimensions will be tried for any functional input not
included in the matrix (unless affected by the f_fixDims argument above).

*f_basTypes: a list specifying the set of basis families that should be tested
for some functional inputs. The values should be taken from the possibilities

22 fgpm_factory

offered by the fgpm function for the argument f_basType therein. Valid choices
at this time are "B-splines" and "PCA". Each element of the list should receive
as name the index of a functional input variable, and should contain an array of
strings with the name of the distances allowed for this input. All the available
basis families will be tried for any functional input not included in the list.

*kerTypes: an array of strings specifying the kernel functions allowed to be
tested. The values should be taken from the possibilities offered by the fgpm
function for the argument kerType therein. Valid choices at this time are "gauss",
"matern5_2" and "matern3_2". If not provided, all the available kernel functions
will be tried.

setup An optional list indicating the value for some parameters of the structural opti-
mization algorithm. The ant colony optimization algorithm available at this time
allows the following entries:

Initial pheromone load

*tao0: a number indicating the initial pheromone load on links pointing out to
the selection of a distance type, a projection basis or a kernel type. Default is 0.1.

*dop.s: a number controlling how likely it is to activate a scalar input. It op-
erates on a relation of the type A = dop.s ∗ I , where A is the initial pheromone
load of links pointing out to the activation of scalar inputs and I is the initial
pheromone load of links pointing out to their inactivation. Default is 1.

*dop.f : analogous to dop.s for functional inputs. Default is 1.

*delta.f and dispr.f : two numbers used as shape parameters for the regulariza-
tion function that determines the initial pheromone values on the links connect-
ing the L2_byindex distance with the projection dimension. Default are 2 and
1.4, respectively.

Local pheromone update

*rho.l: a number specifying the pheromone evaporation rate. Default is 0.1.

Global pheromone update

*u.gbest: a boolean indicating if at each iteration, the pheromone load on the
links of the best ant of the whole trial should be reinforced. Default is FALSE.

*n.ibest: a number indicating how many top ants of each iteration should be
used for pheromone reinforcement. Default is 1.

*rho.g: a number specifying the learning reinforcement rate. Default is 0.1.

Population factors

fgpm_factory 23

*n.iter: a number specifying the amount of iterations of the algorithm. De-
fault is 15.

*n.pop: a number specifying the amount of ants per iteration; each ant corre-
sponds to one structural configuration for the model. Default is 10.

Bias strength

*q0: ants use one of two rules to select their next node at each step. The first
rule leads the ant through the link with higher pheromone load; the second rule
works based on probabilities which are proportional to the pheromone load on
the feasible links. The ants will randomly chose one of the two rules at each
time. They will opt for rule 1 with probability q0. Default is 0.95.

time.lim An optional number specifying a time limit in seconds to be used as stopping
condition for the structural optimization.

nugget An optional variance value standing for the homogeneous nugget effect. A tiny
nugget might help to overcome numerical problems related to the ill-conditioning
of the covariance matrix. Default is 1e-8.

n.starts An optional integer indicating the number of initial points to use for the opti-
mization of the hyperparameters. A parallel processing cluster can be exploited
in order to speed up the evaluation of multiple initial points. More details in the
description of the argument par.clust below. Default is 1.

n.presample An optional integer indicating the number of points to be tested in order to se-
lect the n.starts initial points. The n.presample points will be randomly sampled
from the hyper-rectangle defined by:

1e-10 ≤ ls_s.hyp[i] ≤ 2*max(sMs[[i]]), for i in 1 to the number of scalar
inputs,
1e-10 ≤ ls_f.hyp[i] ≤ 2*max(fMs[[i]]), for i in 1 to the number of func-
tional inputs,

with sMs and fMs the lists of distance matrices for the scalar and functional
inputs, respectively. The value of n.starts will be assigned to n.presample if this
last is smaller. Default is 20.

par.clust An optional parallel processing cluster created with the makeCluster function
of the parallel package. If not provided, structural configurations are evaluated
in sequence.

trace An optional boolean indicating if control messages native of the funGp package
should be printed to console. Default is TRUE. For complementary control on
the display of funGp-native progress bars, have a look at the pbars argument
below.

pbars An optional boolean indicating if progress bars should be displayed. Default is
TRUE.

24 fgpm_factory

Value

An object of class Xfgpm containing the data structures linked to the structural optimization of
a funGp model. It includes as the main component an object of class fgpm corresponding to the
optimized model. It is accessible through the @model slot of the Xfgpm object.

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

References

Betancourt, J., Bachoc, F., Klein, T., Idier, D., Rohmer, J., and Deville, Y. (2024), "funGp: An R
Package for Gaussian Process Regression with Scalar and Functional Inputs". Journal of Statistical
Software, 109, 5, 1–51. (doi:10.18637/jss.v109.i05)

Betancourt, J., Bachoc, F., Klein, T., Idier, D., Pedreros, R., and Rohmer, J. (2020), "Gaussian
process metamodeling of functional-input code for coastal flood hazard assessment". Reliability
Engineering & System Safety, 198, 106870. (doi:10.1016/j.ress.2020.106870) [HAL]

Betancourt, J., Bachoc, F., Klein, T., and Gamboa, F. (2020), Technical Report: "Ant Colony
Based Model Selection for Functional-Input Gaussian Process Regression. Ref. D3.b (WP3.2)".
RISCOPE project. [HAL]

Betancourt, J., Bachoc, F., and Klein, T. (2020), R Package Manual: "Gaussian Process Regression
for Scalar and Functional Inputs with funGp - The in-depth tour". RISCOPE project. [HAL]

Dubrule, O. (1983), "Cross validation of kriging in a unique neighborhood". Journal of the Inter-
national Association for Mathematical Geology, 15, 687-699. [MG]

See Also

* plot,Xfgpm-method with which = "evolution" for visualizing the evolution of the ACO algo-
rithm, or with which = "diag" for a diagnostic plot;

* get_active_in for post-processing of input data structures following a fgpm_factory call;

* predict,fgpm-method for predictions based on a funGp model;

* simulate,fgpm-method for simulations based on a funGp model;

* update,fgpm-method for post-creation updates on a funGp model.

Examples

#construction of a fgpm object
set.seed(100)
n.tr <- 32
x1 <- x2 <- x3 <- x4 <- x5 <- seq(0,1,length = n.tr^(1/5))
sIn <- expand.grid(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = x5)
fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),

f2 = matrix(runif(n.tr * 22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)

optimizing the model structure with fgpm_factory (~12 seconds)
Not run:

https://doi.org/10.18637/jss.v109.i05
https://doi.org/10.1016/j.ress.2020.106870
https://hal.science/hal-01998724
https://hal.science/hal-02532713
https://hal.science/hal-02536624
https://link.springer.com/article/10.1007/BF01033232

fgpm_factory 25

xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut)

End(Not run)

assessing the quality of the model
in the absolute and also w.r.t. the other explored models
plot(xm, which = "diag")

checking the evolution of the algorithm
plot(xm, which = "evol")

Summary of the tested configurations
summary(xm)

checking the log of crashed iterations
print(xm@log.crashes)

building the model with the default fgpm arguments to compare
set.seed(100)
n.tr <- 32
x1 <- x2 <- x3 <- x4 <- x5 <- seq(0,1,length = n.tr^(1/5))
sIn <- expand.grid(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = x5)
fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),
f2 <- matrix(runif(n.tr * 22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)
plot(m1) # plotting the model

improving performance with more iterations___
call to fgpm_factory (~22 seconds)
Not run:
xm25 <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut,

setup = list(n.iter = 25))

End(Not run)

assessing evolution and quality
plot(xm25, which = "evol")
plot(xm25, which = "diag")

custom solution space__
myctr <- list(s_keepOn = c(1,2), # keep both scalar inputs always on
f_keepOn = c(2), # keep f2 always active
f_disTypes = list("2" = c("L2_byindex")), # only use L2_byindex distance for f2
f_fixDims = matrix(c(2,4), ncol = 1), # f2 projected in dimension 4
f_maxDims = matrix(c(1,5), ncol = 1), # f1 projected in dimension max 5
f_basTypes = list("1" = c("B-splines")), # only use B-splines projection for f1
kerTypes = c("matern5_2", "gauss")) # test only Matern 5/2 and Gaussian kernels
#
call to fgpm_factory (~12 seconds)
Not run:
xmc <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ctraints = myctr)

26 fgpm_factory

End(Not run)

assessing evolution and quality
plot(xmc, which = "evol")
plot(xmc, which = "diag")

verifying constraints with the log of some successfully built models
summary(xmc)

custom heuristic parameters__
mysup <- list(n.iter = 30, n.pop = 12, tao0 = .15, dop.s = 1.2,

dop.f = 1.3, delta.f = 4, dispr.f = 1.1, q0 = .85,
rho.l = .2, u.gbest = TRUE, n.ibest = 2, rho.g = .08)

call to fgpm_factory (~20 seconds)
Not run:
xmh <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = mysup)

End(Not run)

verifying heuristic setup through the details of the Xfgpm object
unlist(xmh@details$param)

stopping condition based on time___
mysup <- list(n.iter = 2000)
mytlim <- 60

call to fgpm_factory (~60 seconds)
Not run:
xms <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut,

setup = mysup, time.lim = mytlim)

End(Not run)
summary(xms)

Not run:
parallelization in the model factory___
generating input and output data
set.seed(100)
n.tr <- 243
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)

calling fgpm_factory in parallel
cl <- parallel::makeCluster(2)
xm.par <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, par.clust = cl) # (~260 seconds)
parallel::stopCluster(cl)

NOTE: in order to provide progress bars for the monitoring of time consuming processes
ran in parallel, funGp relies on the doFuture and future packages. Parallel processes

fgpProj-class 27

suddenly interrupted by the user tend to leave corrupt connections. This problem is
originated outside funGp, which limits our control over it. In the initial (unpublished)
version of the funGp manual, we provide a temporary solution to the issue and we remain
attentive in case it appears a more elegant way to handle it or a manner to suppress it.
#
funGp original (unpublished) manual: https://hal.science/hal-02536624

End(Not run)

fgpProj-class S4 class for structures linked to projections in a fgpm model

Description

This is the formal representation for data structures linked to projection of inputs in a Gaussian
process model within the funGp package.

Slots

pdims Object of class "numeric". Projection dimension of each input.

basType Object of class "character". To be chosen from {"PCA", "B-splines"}.

basis Object of class "list". Projection basis. For functional inputs, each element (fDims_i x
fpDims_i) contains the basis functions used for the projection of one functional input.

coefs Object of class "list". Each element (n x fpDims_i) contains the coefficients used for the
projection of one functional input.

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

get_active_in Extraction of active inputs in a given model structure

Description

The fgpm_factory function returns an object of class "Xfgpm" with the function call of all the evalu-
ated models stored in the @log.success@args and @log.crashes@args slots. The get_active_in
function interprets the arguments linked to any structural configuration and returns a list with two
elements: (i) a matrix of scalar input variables kept active; and (ii) a list of functional input
variables kept active.

Usage

get_active_in(sIn = NULL, fIn = NULL, args)

28 get_active_in

Arguments

sIn An optional matrix of scalar input coordinates with all the orignal scalar input
variables.

fIn An optional list of functional input coordinates with all the original functional
input variables.

args An object of class "modelCall", which specifies the model structure for which
the active inputs should be extracted.

Value

An object of class "list", containing the following information extracted from the args parameter:
(i) a matrix of scalar input variables kept active; and (ii) a list of functional input variables kept
active.

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

References

Betancourt, J., Bachoc, F., Klein, T., Idier, D., Rohmer, J., and Deville, Y. (2024), "funGp: An R
Package for Gaussian Process Regression with Scalar and Functional Inputs". Journal of Statistical
Software, 109, 5, 1–51. (doi:10.18637/jss.v109.i05)

Betancourt, J., Bachoc, F., and Klein, T. (2020), R Package Manual: "Gaussian Process Regression
for Scalar and Functional Inputs with funGp - The in-depth tour". RISCOPE project. [HAL]

See Also

* which_on for details on how to obtain only the indices of the active inputs.

* modelCall for details on the args argument.

* fgpm_factory for funGp heuristic model selection.

* Xfgpm for details on object delivered by fgpm_factory.

Examples

Use precalculated Xfgpm object named xm
indices of active inputs in the best model
xm@log.success@args[[1]] # the full fgpm call
set.seed(100)
n.tr <- 32
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),
x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
which_on(sIn, fIn, xm@log.success@args[[1]]) # only the indices extracted by which_on

data structures of active inputs
active <- get_active_in(sIn, fIn, xm@log.success@args[[1]])

https://doi.org/10.18637/jss.v109.i05
https://hal.science/hal-02536624

get_active_in 29

active$sIn.on # scalar data structures
active$fIn.on # functional data structures
identifying selected model and corresponding fgpm arguments
opt.model <- xm@model
opt.args <- xm@log.success@args[[1]]

generating new input data for prediction
n.pr <- 243
sIn.pr <- expand.grid(x1 = seq(0,1,length = n.pr^(1/5)), x2 = seq(0,1,length = n.pr^(1/5)),

x3 = seq(0,1,length = n.pr^(1/5)), x4 = seq(0,1,length = n.pr^(1/5)),
x5 = seq(0,1,length = n.pr^(1/5)))

fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10), f2 = matrix(runif(n.pr*22), ncol = 22))

pruning data structures for prediction to keep only active inputs!!
active <- get_active_in(sIn.pr, fIn.pr, opt.args)

making predictions
preds <- predict(opt.model, sIn.pr = active$sIn.on, fIn.pr = active$fIn.on)

plotting predictions
plot(preds)

preparing new data for simulation based on inputs kept active____________________________
opt.model <- xm@model
opt.args <- xm@log.success@args[[1]]

generating new input data for simulation
n.sm <- 243
sIn.sm <- expand.grid(x1 = seq(0,1,length = n.pr^(1/5)), x2 = seq(0,1,length = n.pr^(1/5)),

x3 = seq(0,1,length = n.pr^(1/5)), x4 = seq(0,1,length = n.pr^(1/5)),
x5 = seq(0,1,length = n.pr^(1/5)))

fIn.sm <- list(f1 = matrix(runif(n.sm*10), ncol = 10), f2 = matrix(runif(n.sm*22), ncol = 22))

pruning data structures for simulation to keep only active inputs!!
active <- get_active_in(sIn.sm, fIn.sm, opt.args)

making light simulations
sims_l <- simulate(opt.model, nsim = 10, sIn.sm = active$sIn.on, fIn.sm = active$fIn.on)

plotting light simulations
plot(sims_l)

Not run:
rebuilding of 3 best models using new data___
NOTE: this example is of higher complexity than the previous ones. We recomend you run
the previous examples and understand the @log.success and @log.crashes slots in
the Xfgpm object delivered by fgpm_factory.
#
In the second example above we showed how to use get_active_in to prune the input
data structures for prediction based on the fgpm arguments of the best model found
by fgpm_factory. In this new example we generalize that concept by: (i) rebuilding
the 3 best models found by fgpm_factory using new data, (ii) pruning the input

30 get_active_in

data structures used for prediction with each of the models, and (iii) plotting
the predictions made by the three models. The key ingredient here is that the
three best models might have different scalar and functional inputs active. The
get_active_in function will allow to process the data structures in order to
extract only the scalar inputs required to re-build the model and then to make
predictions with each model. Check also the funGp manual for further details
#
funGp manual: https://doi.org/10.18637/jss.v109.i05

<<<<<<< PART 1: calling fgpm_factory to perform the structural optimization >>>>>>>

this part is precalculated and loaded via data("precalculated_Xfgpm_objects")
summary(xm)

<<<<<<< PART 2: re-building the three best models found by fgpm_factory >>>>>>>

recovering the fgpm arguments of the three best models
argStack <- xm@log.success@args[1:3]

new data arrived, now we have 243 observations
n.nw <- 243 # more points!
sIn.nw <- expand.grid(x1 = seq(0,1,length = n.nw^(1/5)), x2 = seq(0,1,length = n.nw^(1/5)),

x3 = seq(0,1,length = n.nw^(1/5)), x4 = seq(0,1,length = n.nw^(1/5)),
x5 = seq(0,1,length = n.nw^(1/5)))

fIn.nw <- list(f1 = matrix(runif(n.nw*10), ncol = 10), f2 = matrix(runif(n.nw*22), ncol = 22))
sOut.nw <- fgp_BB7(sIn.nw, fIn.nw, n.nw)

the second best model
modelDef(xm,2)
re-building the three best models based on the new data (compact code with all 3 calls)
newEnv <- list(sIn = sIn.nw, fIn = fIn.nw, sOut = sOut.nw)
modStack <- lapply(1:3, function(i) eval(parse(text = modelDef(xm,i)), env = newEnv))

<<<<<<< PART 3: making predictions from the three best models found by fgpm_factory >>>>>>>

generating input data for prediction
n.pr <- 32
sIn.pr <- expand.grid(x1 = seq(0,1,length = n.pr^(1/5)), x2 = seq(0,1,length = n.pr^(1/5)),

x3 = seq(0,1,length = n.pr^(1/5)), x4 = seq(0,1,length = n.pr^(1/5)),
x5 = seq(0,1,length = n.pr^(1/5)))

fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10), matrix(runif(n.pr*22), ncol = 22))

making predictions based on the three best models (compact code with all 3 calls)
preds <- do.call(cbind, Map(function(model, args) {

active <- get_active_in(sIn.pr, fIn.pr, args)
predict(model, sIn.pr = active$sIn.on, fIn.pr = active$fIn.on)$mean

}, modStack, argStack))

<<<<<<< PART 4: plotting predictions from the three best models found by fgpm_factory >>>>>>>

modelCall-class 31

plotting predictions made by the three models
plot(1, xlim = c(1,nrow(preds)), ylim = range(preds), xaxt = "n",

xlab = "Prediction point index", ylab = "Output",
main = "Predictions with best 3 structural configurations")

axis(1, 1:nrow(preds))
for (i in seq_len(n.pr)) {lines(rep(i,2), range(preds[i,1:3]), col = "grey35", lty = 3)}
points(preds[,1], pch = 21, bg = "black")
points(preds[,2], pch = 23, bg = "red")
points(preds[,3], pch = 24, bg = "green")
legend("bottomleft", legend = c("Model 1", "Model 2", "Model 3"),

pch = c(21, 23, 24), pt.bg = c("black", "red", "green"), inset = c(.02,.08))

End(Not run)

modelCall-class S4 class for calls to the fgpm function in funGp

Description

User reminder of the fgpm function call.

Slots

string Object of class "character". User call reminder in string format.

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

modelDef Retrieve a fgpm from within a Xfgpm object

Description

Retrieve the fgpm model with index (or rank) i from within a Xfgpm object. By evaluating this code
in an environment containing suitable objects sIn, fIn and sOut we can re-create a fgpm object.

Usage

modelDef(
object,
ind,
trace = TRUE,
pbars = TRUE,
control.optim = list(trace = TRUE)

)

32 modelDef

Arguments

object A Xfgpm object as created by fgpm_factory.

ind The index (or rank) of the model in object.

trace An optional boolean indicating whether funGp-native progress messages should
be displayed. Default is TRUE. See the fgpm() documentation for more details.

pbars An optional boolean indicating whether progress bars managed by fgpm() should
be displayed. Default is TRUE. See the fgpm() documentation for more details.

control.optim An optional list to be passed as the control argument to optim(), the function
in charge of the non-linear optimization of the hyperparameters. Default is
list(trace = TRUE). See the fgpm() documentation for more details.

Details

The models are sorted by decreasing quality so i = 1 extracts the definition of the best model.

Value

A parsed R code defining the fgpm model.

Note

Remind that the models are sorted by decreasing quality so i = 1 extracts the definition of the best
model.

See Also

The [[,Xfgpm-method that can also be used to re-create a fgpm object using the same data as that
used to create the Xfgpm object in object.

Examples

===
Using the pre-calculated object `xm` to save time. See `?xm` to re-create
this object.
===

'xm@model' is the best 'fgpm' model in 'xm'
plot(xm@model)

see the R code to use to recreate the model
modelDef(xm, i = 1)

Not run:
Define new data in a list. Using an environment would also work,
including the global environment, which is the default in `eval`.
L <- list()
set.seed(341)
n.new <- 3^5
x1 <- x2 <- x3 <- x4 <- x5 <- seq(0, 1, length = n.new^(1/5))

plot,fgpm-method 33

create the data objects required to fit the model
L$sIn <- as.matrix(expand.grid(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = x5))
L$fIn <- list(f1 = matrix(runif(n.new * 10), ncol = 10),

f2 = matrix(runif(n.new * 22), ncol = 22))
L$sOut <- fgp_BB7(L$sIn, L$fIn, n.new)

Now evaluate
fgpm.new <- eval(modelDef(xm, i = 1), envir = L)
plot(fgpm.new, main = "Re-created 'fgpm' model with different data")
plot(xm[[1]], main = "Re-created 'fgpm' model with the same data")

End(Not run)

plot,fgpm-method Plot method for the class "fgpm"

Description

This method provides a diagnostic plot for the validation of regression models. It displays a cal-
ibration plot based on the leave-one-out predictions of the output at the points used to train the
model.

Usage

S4 method for signature 'fgpm'
plot(x, y = NULL, ...)

Arguments

x A fgpm object.

y Not used.

... Graphical parameters. These currently include

• xlim, ylim to set the limits of the axes.
• pch, pt.col, pt.bg, pt.cex to set the symbol used for the points and the

related properties.
• line to set the color used for the line.
• xlab, ylab, main to set the labels of the axes and the main title. See Ex-

amples.

Details

Plot the Leave-One-Out (LOO) calibration.

34 plot,Xfgpm-method

Examples

generating input and output data for training
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)),

x2 = seq(0, 1, length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10),

f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)

building the model
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

plotting the model
plot(m1)
change some graphical parameters if wanted
plot(m1, line = "SpringGreen3" ,

pch = 21, pt.col = "orangered", pt.bg = "gold",
main = "LOO cross-validation")

plot,Xfgpm-method Plot method for the class "Xfgpm"

Description

Plot an object with class "Xfgpm" representing a collection of functional GP models corresponding
to different structural parameters.

Two types of graphics can be shown depending on the choice of which. The choice which = "diag"
is used to display diagnostics of the quality of the optimized model. Two types of diagnostic
plots are shown as sub-plots by default, but each can be discarded if wanted. The choice which
= "evol" is used to assess the quality of the fitted fgpm models on the basis of Leave-One-Out
cross-validation.

The choice which = "diag" (default) provides two plots for assessing the quality of the output de-
livered by the model selection algorithm in the fgpm_factory function. The first one is a calibration
plot similar to the one offered for fgpm objects by plot,fgpm-method. This plot allows to validate
the absolute quality of the selected model. The second one displays the performance statistic of all
the models successfully evaluated by the model selection algorithm. This provides a notion of the
relative quality of the selected model with respect to the other models that can be made using the
same data.

The choice which = "evol" displays the evolution of the quality of the configurations evaluated
along the iterations, by the model selection algorithm in the fgpm_factory function. For each
iteration, the performance statistic of all the evaluated models is printed, along with the correspond-
ing median of the group. The plot also includes the global maximum, which corresponds to the
best performance statistic obtained up to the current iteration. In this plot, it is typical to have
some points falling relatively far from the maximum, even after multiple iterations. This happens

plot,Xfgpm-method 35

mainly because we have multiple categorical features, whose alteration might change the perfor-
mance statistic in a nonsmooth way. On the other hand, the points that fall below zero usually
correspond to models whose hyperparameters were hard to optimize. This occurs sporadically dur-
ing the log-likelihood optimization for Gaussian processes, due to the non-linearity of the objective
function. As long as the maximum keeps improving and the median remains close to it, none of
the two aforementioned phenomena is matter for worries. Both of them respond to the mechanism
of exploration implemented in the algorithm, which makes it able to progressively move towards
better model configurations.

Usage

S4 method for signature 'Xfgpm'
plot(
x,
y = NULL,
which = c("diag", "evol"),
calib = TRUE,
fitp = TRUE,
horiz = FALSE,
...

)

Arguments

x The Xfgpm object to plot.

y Not used.

which Character giving the type of plot wanted. Can take the value "diag" or "evol".
See Examples.

calib Logical. If TRUE the calibration plot of the selected model will be included in
the display in its "diagnostic" part if which is set to "diag".

fitp Logical. If TRUE a scatter plot of the quality of all explored models will be
included in the display in its "diagnostic" part if which is set to "diag".

horiz Logical. Used only when which is "diag" and when both calib and fitp are
TRUE. If horiz is TRUE the two subplots are displayed horizontally (on a same
row) rather than vertically which is the default.

... Other graphical parameters such as main of xlab. When which is "diag" and
both calib and fitp are TRUE, the graphical parameters should be enclosed into
a list and passed with the formal name calib.gpars or fitp.gpars.

See Also

* fgpm_factory for structural optimization of funGp models.

Examples

generating input and output data
set.seed(100)
n.tr <- 2^5

36 plot.predict.fgpm

x1 <- x2 <- x3 <- x4 <- x5 <- seq(0, 1, length = n.tr^(1/5))
sIn <- expand.grid(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = x5)
fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),

f2 = matrix(runif(n.tr * 22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)
Not run:
optimizing the model structure with 'fgpm_factory' (~10 seconds)
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut)
assessing the quality of the model - absolute and w.r.t. the other
explored models
plot(xm, which = "evol")
diagnostics (two subplots)
plot(xm, which = "diag")
plot(xm, which = "diag", horiz = TRUE)
diagnostics (one plot)
plot(xm, which = "diag", fitp = FALSE)
plot(xm, which = "diag", calib = FALSE)
customizing some graphical parameters
plot(xm, calib.gpars = list(xlim = c(800,1000), ylim = c(600,1200)),

fitp.gpars = list(main = "Relative quality", legends = FALSE))

End(Not run)

plot.predict.fgpm Plot method for the predictions of a fgpm model

Description

This method displays the predicted output values delivered by a funGp Gaussian process model.

Usage

S3 method for class 'predict.fgpm'
plot(x, y = NULL, sOut.pr = NULL, calib = TRUE, sortp = TRUE, ...)

Arguments

x An object with S3 class "predict.fgpm". This is a list containing the predic-
tions and confidence bands as created by predict,fgpm-method for the S3 class
"fgpm".

y An optional vector (or 1-column matrix) containing the true values of the scalar
output at the prediction points. If provided, the method will display two figures:
(i) a calibration plot with true vs predicted output values, and (ii) a plot including
the true and predicted output along with the confidence bands, sorted according
to the increasing order of the true output. If not provided, only the second plot
will be made, and the predictions will be arranged according to the increasing
order of the predicted output.

plot.predict.fgpm 37

sOut.pr Alias of y, used for compatibility reasons.

calib An optional boolean indicating if the calibration plot should be displayed. Ig-
nored if sOut.pr is not provided. Default is TRUE.

sortp An optional boolean indicating if the plot of sorted output should be displayed.
Default is TRUE.

... Additional arguments affecting the display. Since this method allows to gen-
erate two plots from a single function call, the extra arguments for each plot
should be included in a list. For the calibration plot, the list should be called
calib.gpars. For the plot of the output in increasing order, the list should be
called sortp.gpars. The following typical graphics parameters are valid entries
of both lists: xlim, ylim, xlab, ylab, main. The boolean argument legends can
also be included in any of the two lists in order to control the display of legends
in the corresponding plot.

Author(s)

José Betancourt, François Bachoc and Thierry Klein

See Also

* fgpm for the construction of funGp models;

* plot,fgpm-method for model diagnostic plots;

* simulate,fgpm-method for simulations based on a funGp model;

* plot.simulate.fgpm for simulation plots.

Examples

plotting predictions without the true output values_______________________
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0, 1, length = sqrt(n.tr)),

x2 = seq(0, 1, length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),

f2 = matrix(runif(n.tr * 22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

making predictions
n.pr <- 100
sIn.pr <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.pr)),

x2 = seq(0,1,length = sqrt(n.pr))))
fIn.pr <- list(f1 = matrix(runif(n.pr * 10), ncol = 10),

f2 = matrix(runif(n.pr * 22), ncol = 22))
m1.preds <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr)

plotting predictions
plot(m1.preds)

38 plot.simulate.fgpm

plotting predictions and true output values_______________________________
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0, 1, length = sqrt(n.tr)),

x2 = seq(0, 1, length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),

f2 = matrix(runif(n.tr * 22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

making predictions
n.pr <- 100
sIn.pr <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.pr)),

x2 = seq(0,1,length = sqrt(n.pr))))
fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10),

f2 = matrix(runif(n.pr*22), ncol = 22))
m1.preds <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr)

generating output data for validation
sOut.pr <- fgp_BB3(sIn.pr, fIn.pr, n.pr)

plotting predictions. Note that the 2-nd argument is the output, 'y'
plot(m1.preds, sOut.pr)

only calibration plot
plot(m1.preds, sOut.pr = sOut.pr, sortp = FALSE)

only sorted output plot
plot(m1.preds, sOut.pr = sOut.pr, calib = FALSE)

plot.simulate.fgpm Plot method for the simulations of a fgpm model

Description

This method displays the simulated output values delivered by a funGp Gaussian process model.

Usage

S3 method for class 'simulate.fgpm'
plot(x, y = NULL, detail = NA, ...)

Arguments

x An object with S3 class simulate.fgpm as created by simulate,fgpm-method.

y Not used.

plot.simulate.fgpm 39

detail An optional character string specifying the data elements that should be included
in the plot, to be chosen between "light" and "full". A light plot will include
only the simulated values, while a full plot will also include the predicted mean
and confidence bands at the simulation points. This argument will only be used
if full simulations (including the mean and confidence bands) are provided, oth-
erwise it will be ignored. See simulate,fgpm-method for more details on the
generation of light and full simulations.

... Additional arguments affecting the display. The following typical graphics pa-
rameters are valid entries: xlim, ylim, xlab, ylab, main. The boolean argument
legends can also be included in any of the two lists in order to control the display
of legends in the corresponding plot.

Author(s)

José Betancourt, François Bachoc and Thierry Klein

See Also

* fgpm for the construction of funGp models;

* plot,fgpm-method for model diagnostic plots;

* predict,fgpm-method for predictions based on a funGp model;

* plot.predict.fgpm for prediction plots.

Examples

plotting light simulations__
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0, 1, length = sqrt(n.tr)),

x2 = seq(0, 1, length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),

f2 = matrix(runif(n.tr * 22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

making light simulations
n.sm <- 100
sIn.sm <- as.matrix(expand.grid(x1 = seq(0, 1, length = sqrt(n.sm)),

x2 = seq(0, 1, length = sqrt(n.sm))))
fIn.sm <- list(f1 = matrix(runif(n.sm * 10), ncol = 10),

f2 = matrix(runif(n.sm * 22), ncol = 22))
simsl <- simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm)

plotting light simulations
plot(simsl)

plotting full simulations___
building the model

40 precalculated_Xfgpm_objects

set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0, 1, length = sqrt(n.tr)),

x2 = seq(0, 1, length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),

f2 = matrix(runif(n.tr * 22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

making full simulations
n.sm <- 100
sIn.sm <- as.matrix(expand.grid(x1 = seq(0, 1, length = sqrt(n.sm)),

x2 = seq(0, 1 ,length = sqrt(n.sm))))
fIn.sm <- list(f1 = matrix(runif(n.sm * 10), ncol = 10),

f2 = matrix(runif(n.sm * 22), ncol = 22))
simsf <- simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm,

detail = "full")

plotting full simulations in "full" mode
plot(simsf)

plotting full simulations in "light" mode
plot(simsf, detail = "light")

precalculated_Xfgpm_objects

Precalculated Xfgpm objects

Description

A dataset containing the results of the application of fgpm_factory to fgp_BB7 analytic black-box
function. See Examples for details.

Format

Five objects of class "Xfgpm":

xm With 32 training points and default parameters.

xm25 With 32 training points and 25 iterations of the algorithm.

xmc With 32 training points and customized solution space.

xmh With 32 training points and customized heuristic parameters.

xms With 32 training points and a time budget constraint and large number of iterations.

precalculated_Xfgpm_objects 41

Examples

Not run:

##
Construction of xm object with default parameters (~12 seconds)
##
set.seed(100)
n.tr <- 32
x1 <- x2 <- x3 <- x4 <- x5 <- seq(0,1,length = n.tr^(1/5))
sIn <- expand.grid(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = x5)
fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),

f2 = matrix(runif(n.tr * 22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut)

##
Construction of xm25 object with 25 iterations (~20 seconds)
##
xm25 <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut,

setup = list(n.iter = 25))

##
Construction of xmc object with customized solution space (~12 seconds)
##
myctr <- list(s_keepOn = c(1,2), # keep both scalar inputs always on
f_keepOn = c(2), # keep f2 always active
f_disTypes = list("2" = c("L2_byindex")), # only use L2_byindex distance for f2
f_fixDims = matrix(c(2,4), ncol = 1), # f2 projected in dimension 4
f_maxDims = matrix(c(1,5), ncol = 1), # f1 projected in dimension max 5
f_basTypes = list("1" = c("B-splines")), # only use B-splines projection for f1
kerTypes = c("matern5_2", "gauss")) # test only Matern 5/2 and Gaussian kernels
xmc <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ctraints = myctr)

##
Construction of xmc object with customized heuristic parameters (~15 seconds)
##
mysup <- list(n.iter = 30, n.pop = 12, tao0 = .15, dop.s = 1.2,

dop.f = 1.3, delta.f = 4, dispr.f = 1.1, q0 = .85,
rho.l = .2, u.gbest = TRUE, n.ibest = 2, rho.g = .08)

xmh <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = mysup)

##
Construction of xmc object with time budget constraint (~60 seconds)
##
mysup <- list(n.iter = 2000)
mytlim <- 60
xms <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut,

setup = mysup, time.lim = mytlim)

End(Not run)

42 predict,fgpm-method

predict,fgpm-method Prediction from a fgpm Gaussian process model

Description

This method enables prediction based on a fgpm model, at any given set of points. Check fgpm for
information on how to create fgpm models.

Usage

S4 method for signature 'fgpm'
predict(object, sIn.pr = NULL, fIn.pr = NULL, detail = c("light", "full"), ...)

Arguments

object An object of class fgpm corresponding to the funGp model that should be used
to predict the output.

sIn.pr An optional matrix of scalar input coordinates at which the output values should
be predicted. Each column is interpreted as a scalar input variable and each
row as a coordinate. Either scalar input coordinates (sIn.pr), functional input
coordinates (fIn.pr), or both must be provided.

fIn.pr An optional list of functional input coordinates at which the output values should
be predicted. Each element of the list is interpreted as a functional input variable.
Every functional input variable should be provided as a matrix with one curve
per row. Either scalar input coordinates (sIn.pr), functional input coordinates
(fIn.pr), or both must be provided.

detail An optional character specifying the extent of information that should be deliv-
ered by the method, to be chosen between "light" (default) and "full". Light
predictions produce a list including the predicted mean, standard deviation and
limits of the 95% confidence intervals at the prediction points. Full predictions
produce the same information as light ones, in addition to the training-prediction
cross-covariance matrix and the prediction auto-covariance matrix.

... Not used.

Value

An object of class "list" containing the data structures linked to predictions. For light predictions,
the list will include the mean, standard deviation and limits of the 95% confidence intervals at
the prediction points. For full predictions, it will include the same information, plus the training-
prediction cross-covariance matrix and the prediction auto-covariance matrix.

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

predict,fgpm-method 43

See Also

* plot.predict.fgpm for the prediction plot of a fgpm model;

* simulate,fgpm-method for simulations based on a fgpm model;

* plot.simulate.fgpm for the simulation plot of a fgpm model.

Examples

light predictions__
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

generating input data for prediction
n.pr <- 100
sIn.pr <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.pr)),

x2 = seq(0,1,length = sqrt(n.pr))))
fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10), matrix(runif(n.pr*22), ncol = 22))

making predictions
m1.preds <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr)

checking content of the list
summary(m1.preds)

~R output:~
Length Class Mode
mean 100 -none- numeric
sd 100 -none- numeric
lower95 100 -none- numeric
upper95 100 -none- numeric

plotting predictions
plot(m1.preds)

comparison against true output___
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

making predictions
n.pr <- 100
sIn.pr <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.pr)),

44 simulate,fgpm-method

x2 = seq(0,1,length = sqrt(n.pr))))
fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10), matrix(runif(n.pr*22), ncol = 22))
m1.preds <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr)

generating output data for validation
sOut.pr <- fgp_BB3(sIn.pr, fIn.pr, n.pr)

plotting predictions along with true output values
plot(m1.preds, sOut.pr)

full predictions___
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

making full predictions
n.pr <- 100
sIn.pr <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.pr)),

x2 = seq(0,1,length = sqrt(n.pr))))
fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10), matrix(runif(n.pr*22), ncol = 22))
m1.preds_f <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr, detail = "full")

checking content of the list
summary(m1.preds_f)

~R output:~
Length Class Mode
mean 100 -none- numeric
sd 100 -none- numeric
K.tp 2500 -none- numeric
K.pp 10000 -none- numeric
lower95 100 -none- numeric
upper95 100 -none- numeric

plotting predictions
plot(m1.preds)

simulate,fgpm-method Random sampling from a fgpm model

Description

This method enables simulation of Gaussian process values at any given set of points based on a
pre-built fgpm model. Check fgpm for information on how to create funGp models.

simulate,fgpm-method 45

Usage

S4 method for signature 'fgpm'
simulate(
object,
nsim = 1,
seed = NULL,
sIn.sm = NULL,
fIn.sm = NULL,
nugget.sm = 0,
detail = c("light", "full"),
...

)

Arguments

object An object of class fgpm corresponding to the funGp model from which simula-
tions must be performed.

nsim An optional integer indicating the number of samples to produce. Default is 1.

seed An optional value interpreted as an integer, that will be used as argument of
set.seed just before simulating the response values.

sIn.sm An optional matrix of scalar input coordinates at which the output values should
be simulated. Each column is interpreted as a scalar input variable and each
row as a coordinate. Either scalar input coordinates (sIn.sm), functional input
coordinates (fIn.sm), or both must be provided.

fIn.sm An optional list of functional input coordinates at which the output values should
be simulated. Each element of the list is interpreted as a functional input vari-
able. Every functional input variable should be provided as a matrix with one
curve per row. Either scalar input coordinates (sIn.sm), functional input coordi-
nates (fIn.sm), or both must be provided.

nugget.sm An optional number corresponding to a numerical nugget effect. If provided,
this number is added to the main diagonal of the simulation covariance matrix
in order to prevent numerical instabilities during Cholesky decomposition. A
small number in the order of 1e-8 is often enough. Default is 0.

detail An optional character specifying the extent of information that should be deliv-
ered by the method, to be chosen between "light" (default) and "full". Light
simulations produce a matrix of simulated output values, with as many rows as
requested random samples. Full simulations produce a list with the matrix of
simulated output values, along with the predicted mean, standard deviation and
limits of the 95% confidence intervals at the simulation points.

... Not used.

Value

An object containing the data structures linked to simulations. For light simulations, the output
will be a matrix of simulated output values, with as many rows as requested random samples. For
full simulations, the output will be a list with the matrix of simulated output values, along with

46 simulate,fgpm-method

the predicted mean, standard deviation and limits of the 95% confidence intervals at the simulation
points.

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

See Also

* plot.simulate.fgpm for the simulation plot of a fgpm model;

* predict,fgpm-method for predictions based on a fgpm model;

* plot.predict.fgpm for the prediction plot of a fgpm model.

Examples

light simulations ___
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

generating input data for simulation
n.sm <- 100
sIn.sm <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.sm)),

x2 = seq(0,1,length = sqrt(n.sm))))
fIn.sm <- list(f1 = matrix(runif(n.sm*10), ncol = 10), matrix(runif(n.sm*22), ncol = 22))

making light simulations
m1.sims_l <- simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm)

plotting light simulations
plot(m1.sims_l)

full simulations __
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

making full simulations
m1.sims_f <- simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm, detail = "full")

checking content of the list
summary(m1.sims_f)

summary,fgpm-method 47

~R output:~
Length Class Mode
sims 1000 -none- numeric
mean 100 -none- numeric
sd 100 -none- numeric
lower95 100 -none- numeric
upper95 100 -none- numeric

plotting full simulations in full mode
plot(m1.sims_f)

plotting full simulations in light mode
plot(m1.sims_f, detail = "light")

summary,fgpm-method Summary method for fgpm objects

Description

Display the structure of a fgpm object and the value of the parameters (variance and length-scales).

Usage

S4 method for signature 'fgpm'
summary(object, ...)

Arguments

object An fgpm object.

... Not used yet.

Note

This method is actually identical to the show method for this class which is called when the name
of the object is entered in an interactive session.

Examples

m <- xm@model
class(m)
summary(m)
m

48 summary,Xfgpm-method

summary,Xfgpm-method Summary method for Xfgpm objects

Description

Display a summary of the structure of a Xfgpm object, with a short description of up to n fgpm
objects visited during the ACO optimization.

Usage

S4 method for signature 'Xfgpm'
summary(object, n = 24, ...)

Arguments

object A Xfgpm object.

n Maximal number of lines (fgpm objects) to show.

... Not used yet.

Details

The displayed information depends on the number of candidate inputs, in order to maintain compact
tables. The inputs are labelled with integer suffixes, the prefix being "X" for scalar inputs and "F"
for functional inputs.

• With a small number of inputs, the list contains only one data frame. For each candidate
input (either scalar or functional) a column with the input name indicates if the input is active
(cross x) or not (white space) in the fgpm object corresponding to the row. For each functional
variable also shown are: the distance used D_, the dimension Bas_ after dimension reduction,
the type of basis used B_. Remind that the kernel (Kern) is the same for all functional inputs.
Also shown is the value of the Leave-One-Out coefficient Q².

• With a large number of inputs, the list contains two data frames. The first one tells which
inputs are active among the scalar and functional candidate inputs. The second data frame
gives more details for functional inputs as before.

Value

An object inheriting from list, actually a list containing one or two data frames depending on the
number of inputs. In each data frame, the n rows provide information on the best fgpm objects
visited.

Examples

summary(xm)

update,fgpm-method 49

update,fgpm-method Easy update of fgpm models

Description

This method enables the update of data or hyperparameters of a fgpm model. It corresponds to an
object of the class fgpm. The method allows addition, subtraction and substitution of data points,
as well as substitution and re-estimation of hyperparameters.

Usage

S4 method for signature 'fgpm'
update(
object,
sIn.nw = NULL,
fIn.nw = NULL,
sOut.nw = NULL,
sIn.sb = NULL,
fIn.sb = NULL,
sOut.sb = NULL,
ind.sb = NULL,
ind.dl = NULL,
var.sb = NULL,
ls_s.sb = NULL,
ls_f.sb = NULL,
var.re = FALSE,
ls_s.re = FALSE,
ls_f.re = FALSE,
extend = FALSE,
trace = TRUE,
pbars = TRUE,
control.optim = list(trace = TRUE),
...

)

Arguments

object An object of class fgpm corresponding to the funGp model to update.

sIn.nw An optional matrix of scalar input values to be added to the model. Each column
must match an input variable and each row a scalar coordinate.

fIn.nw An optional list of functional input values to be added to the model. Each ele-
ment of the list must be a matrix containing the set of curves corresponding to
one functional input.

sOut.nw An optional vector (or 1-column matrix) containing the values of the scalar out-
put at the new input points.

50 update,fgpm-method

sIn.sb An optional matrix of scalar input values to be used as substitutes of other scalar
input values already stored in the model. Each column must match an input
variable and each row a coordinate.

fIn.sb An optional list of functional input values to be added to the model. Each ele-
ment of the list must be a matrix containing the set of curves corresponding to
one functional input.

sOut.sb An optional vector (or 1-column matrix) containing the values of the scalar out-
put at the substituting input points.

ind.sb An optional numeric array indicating the indices of the input and output points
stored in the model, that should be replaced by the values specified through
sIn.sb, fIn.sb and/or sOut.sb.

ind.dl An optional numeric array indicating the indices of the input and output points
stored in the model that should be deleted.

var.sb An optional number indicating the value that should be used to substitute the
current variance parameter of the model.

ls_s.sb An optional numerical array indicating the values that should be used to substi-
tute the current length-scale parameters for the scalar inputs of the model.

ls_f.sb An optional numerical array indicating the values that should be used to substi-
tute the current length-scale parameters for the functional inputs of the model.

var.re An optional boolean indicating whether the variance parameter should be re-
estimated. Default is FALSE.

ls_s.re An optional boolean indicating whether the length-scale parameters of the scalar
inputs should be re-estimated. Default is FALSE.

ls_f.re An optional boolean indicating whether the length-scale parameters of the func-
tional inputs should be re-estimated. Default is FALSE.

extend An optional boolean indicating whether the re-optimization should extend from
the current hyperparameters of the model using them as initial points. Default
is FALSE, meaning that the re-optimization picks brand new initial points in the
way described in fgpm(). If both hyperparameter substitution and re-estimation
are requested in a single update() call and extend is set to TRUE, the values
used as initial points for the re-optimization are those stored by the model after
the substitution step.

trace An optional boolean indicating whether funGp-native progress messages and a
summary update should be displayed. Default is TRUE. See the fgpm() docu-
mentation for more details.

pbars An optional boolean indicating whether progress bars managed by fgpm() should
be displayed (in case the update requires an fgpm() call). Default is TRUE. See
the fgpm() documentation for more details.

control.optim An optional list to be passed as the control argument to optim() (in case the
update requires an fgpm() call), the function in charge of the non-linear opti-
mization of the hyperparameters. Default is list(trace = TRUE). See the fgpm()
documentation for more details.

... Not used.

update,fgpm-method 51

Details

The arguments listed above enable the completion of the following updating tasks:

• Deletion of data points: ind.dl;

• Addition of data points: sIn.nw, fIn.nw, sOut.nw;

• Substitution of data points: sIn.sb, fIn.sb, sOut.sb, ind.sb;

• Substitution of hyperparameters: var.sb, ls_s.sb, ls_f.sb;

• Re-estimation of hyperparameters: var.re, ls_s.re, ls_f.re.

All the arguments listed above are optional since any of these tasks can be requested without need to
request any of the other tasks. In fact, most of the arguments can be used even if the other arguments
related to the same task are not. For instance, the re-estimation of the variance can be requested via
var.re without requiring re-estimation of the scalar or functional length-scale parameters. The only
two exceptions are: (i) for data addition, the new output sOut.nw should always be provided and the
new input points should correspond to the set of variables already stored in the fgpm object passed
for update; and (ii) for data substitution, the argument ind.sb is always mandatory.

Conflicting task combinations:

• Data points deletion and substitution;

• Substitution and re-estimation of the same hyperparameter.

Note that the parameters of the model will not be updated after modifying the model unless ex-
plicitly requested through the var.re, ls_s.re and ls_f.re arguments. If, for instance, some points are
added to the model without requesting parameter re-estimation, the new data will be included in the
training-training and training-prediction covariance matrices, but the hyperparameters will not be
updated. This allows to make updates in the data that might help to improve predictions, without
the immediate need to perform a training procedure that could be time consuming. At any later
time, the user is allowed to request the re-estimation of the hyperparameters, which will make the
model fully up to date.

Value

An object of class fgpm representing the updated funGp model.

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

See Also

* fgpm for creation of a funGp model;

* predict,fgpm-method for predictions based on a fgpm model;

* simulate,fgpm-method for simulations based on a fgpm model.

52 update,fgpm-method

Examples

deletion and addition of data points___
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

deleting two points
ind.dl <- sample(1:m1@n.tot, 2)
m1up <- update(m1, ind.dl = ind.dl)

adding five points
n.nw <- 5
sIn.nw <- matrix(runif(n.nw * m1@ds), nrow = n.nw)
fIn.nw <- list(f1 = matrix(runif(n.nw*10), ncol = 10), f2 = matrix(runif(n.nw*22), ncol = 22))
sOut.nw <- fgp_BB3(sIn.nw, fIn.nw, n.nw)
m1up <- update(m1, sIn.nw = sIn.nw, fIn.nw = fIn.nw, sOut.nw = sOut.nw)

substitution of data points__
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

generating substituting input data for updating
n.sb <- 2
sIn.sb <- matrix(runif(n.sb * m1@ds), nrow = n.sb)
fIn.sb <- list(f1 = matrix(runif(n.sb*10), ncol = 10), f2 = matrix(runif(n.sb*22), ncol = 22))

generating substituting output data for updating
sOut.sb <- fgp_BB3(sIn.sb, fIn.sb, n.sb)

generating indices for substitution
ind.sb <- sample(1:(m1@n.tot), n.sb)

updating all, the scalar inputs, functional inputs and the outputs
m1up <- update(m1, sIn.sb = sIn.sb, fIn.sb = fIn.sb, sOut.sb = sOut.sb, ind.sb = ind.sb)

updating only some of the data structures
m1up1 <- update(m1, sIn.sb = sIn.sb, ind.sb = ind.sb) # only the scalar inputs
m1up2 <- update(m1, sOut.sb = sOut.sb, ind.sb = ind.sb) # only the outputs
m1up3 <- update(m1, sIn.sb = sIn.sb, sOut.sb = sOut.sb, ind.sb = ind.sb) # the scalar inputs

and the outputs

which_on 53

substitution of hyperparameters__
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

defining hyperparameters for substitution
var.sb <- 3
ls_s.sb <- c(2.44, 1.15)
ls_f.sb <- c(5.83, 4.12)

updating the model
m1up <- update(m1, var.sb = var.sb, ls_s.sb = ls_s.sb, ls_f.sb = ls_f.sb)

re-estimation of hyperparameters___
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

re-estimating the hyperparameters
m1up <- update(m1, var.re = TRUE) # only the variance
m1up <- update(m1, ls_s.re = TRUE) # only the scalar length-scale parameters
m1up <- update(m1, ls_s.re = TRUE, ls_f.re = TRUE) # all length-scale parameters
m1up <- update(m1, var.re = TRUE, ls_s.re = TRUE, ls_f.re = TRUE) # all hyperparameters

same as above but now extending optimization from previously stored values
m1up <- update(m1, var.re = TRUE, extend = TRUE)
m1up <- update(m1, ls_s.re = TRUE, extend = TRUE)
m1up <- update(m1, ls_s.re = TRUE, ls_f.re = TRUE, extend = TRUE)
m1up <- update(m1, var.re = TRUE, ls_s.re = TRUE, ls_f.re = TRUE, extend = TRUE)

which_on Indices of active inputs in a given model structure

Description

The fgpm_factory function returns an object of class "Xfgpm" with the function calls of all the
evaluated models stored in the @log.success@args and @log.crashes@args slots. The which_on
function interprets the arguments linked to any structural configuration and returns a list with two
elements: (i) an array of indices of the scalar inputs kept active; and (ii) an array of indices of the
functional inputs kept active.

54 which_on

Usage

which_on(sIn = NULL, fIn = NULL, args)

Arguments

sIn An optional matrix of scalar input coordinates with all the orignal scalar input
variables. This is used only to know the total number of scalar input variables.
Any matrix with as many columns as original scalar input variables could be
used instead.

fIn An optional list of functional input coordinates with all the original functional
input variables. This is used only to know the total number of functional input
variables. Any list with as many elements as original functional input variables
could be used instead.

args An object of class "modelCall", which specifies the model structure for which
the active inputs should be extracted.

Value

An object of class "list", containing the following information extracted from the args parameter:
(i) an array of indices of the scalar inputs kept active; and (ii) an array of indices of the functional
inputs kept active.

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

References

Betancourt, J., Bachoc, F., Klein, T., Idier, D., Rohmer, J., and Deville, Y. (2024), "funGp: An R
Package for Gaussian Process Regression with Scalar and Functional Inputs". Journal of Statistical
Software, 109, 5, 1–51. (doi:10.18637/jss.v109.i05)

Betancourt, J., Bachoc, F., Klein, T., Idier, D., Rohmer, J., and Deville, Y. (2024), "funGp: An R
Package for Gaussian Process Regression with Scalar and Functional Inputs". Journal of Statistical
Software, 109, 5, 1–51. (doi:10.18637/jss.v109.i05)

Betancourt, J., Bachoc, F., and Klein, T. (2020), R Package Manual: "Gaussian Process Regression
for Scalar and Functional Inputs with funGp - The in-depth tour". RISCOPE project. [HAL]

See Also

* get_active_in for details on how to obtain the data structures linked to the active inputs;

* modelCall for details on the args argument;

* fgpm_factory for funGp heuristic model selection;

* Xfgpm for details on object delivered by fgpm_factory.

https://doi.org/10.18637/jss.v109.i05
https://doi.org/10.18637/jss.v109.i05
https://hal.science/hal-02536624

Xfgpm-class 55

Examples

extracting the indices of the active inputs in an optimized model________________________
use precalculated Xfgpm object named xm
active inputs in the best model
xm@log.success@args[[1]] # the full fgpm call
set.seed(100)
n.tr <- 32
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),
x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
which_on(sIn, fIn, xm@log.success@args[[1]]) # only the indices extracted by which_on

Xfgpm-class S4 class for funGp model selection data structures

Description

This is the formal representation of the assembly of data structures delivered by the model selection
routines in the funGp package. An Xfgpm object contains the trace of an optimization process,
conducted to build Gaussian process models of outstanding performance.

• Main methods
fgpm_factory: structural optimization of fgpm models, creator of the "Xfgpm" class.

• Plotters
plot,Xfgpm-method: plot of the evolution of the algorithm with which = "evolution" or of
the absolute and relative quality of the optimized model with which = "diag".

Slots

factoryCall Object of class "factoryCall". User call reminder.

model Object of class "fgpm". Model selected by the heuristic structural optimization algorithm.

stat Object of class "character". Performance measure optimized to select the model. To be set
from "Q2loocv", "Q2hout".

fitness Object of class "numeric". Value of the performance measure for the selected model.

structure Object of class "data.frame". Structural configuration of the selected model.

log.success Object of class "antsLog". Record of models successfully evaluated during the
structural optimization. It contains the structural configuration both in data.frame and "modelCall"
format, along with the fitness of each model. The models are sorted by fitness, starting with
the best model in the first position.

log.crashes Object of class "antsLog". Record of models crashed during the structural op-
timization. It contains the structural configuration of each model, both in data.frame and
"modelCall" format.

56 [[,Xfgpm-method

n.solspace Object of class "numeric". Number of possible structural configurations for the opti-
mization instance resolved.

n.explored Object of class "numeric". Number of structural configurations successfully evalu-
ated by the algorithm.

details Object of class "list". Further information about the parameters of the ant colony opti-
mization algorithm and the evolution of the fitness along the iterations.

sIn An object of class "matrix" containing a copy of the provided scalar inputs.

fIn An object of class "list" containing a copy of the provided functional inputs.

sOut An object of class "matrix" containing a copy of the provided outputs.

Useful material

• Manual funGp: An R Package for Gaussian Process Regression with Scalar and Functional
Inputs (doi:10.18637/jss.v109.i05)

Author(s)

José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer

[[,Xfgpm-method Refit a fgpm model in a Xfgpm object

Description

Refit a fgpm model as described in a Xfgpm object.

Usage

S4 method for signature 'Xfgpm'
x[[i]]

Arguments

x A Xfgpm object.

i An integer giving the index of the model to refit. The models are in decreasing
fit quality as assessed by the Leave-One-Out Q2.

Caution

While the syntax may suggest that the function extracts a fitted fgpm model, this not true. The fgpm
model is refitted using the call that was used when this model was assessed. The refitted fgpm model
keeps the same structural parameters as the one assessed (active variables, kernel, ...), but since the
optimization uses random initial values, the optimized hyper-parameters may differ from those of
the corresponding fgpm in the Xfgpm object x. As a result, the model can be different and show a
different LOO performance.

https://doi.org/10.18637/jss.v109.i05

[[,Xfgpm-method 57

Note

The slot @model returns the best fgpm as assessed in a Xfgm model x. So this model can be expected
to be close to the same as x[[1]]. Yet due to the refit, the two models x@model and x[[1]] can
differ, see the explanations in the Caution section.

See Also

The modelDef function to extract the definition of a fgpm model e.g., to evaluate it using new data
sIn, fIn and sOut.

Examples

see `?xm` to see how to recreate the pre-caclulated `Xfgpm` object `xm`.
xm[[2]]

Index

∗ data
precalculated_Xfgpm_objects, 40

[[,Xfgpm-method, 56

all main functions, plotters and
getters, 6

antsLog, 55
antsLog-class, 4

black-boxes, 5

decay, 3, 7, 9, 10
decay2probs, 3, 8, 9

factoryCall, 55
factoryCall-class, 11
fgp_BB1 (black-boxes), 5
fgp_BB2 (black-boxes), 5
fgp_BB3 (black-boxes), 5
fgp_BB4 (black-boxes), 5
fgp_BB5 (black-boxes), 5
fgp_BB6 (black-boxes), 5
fgp_BB7 (black-boxes), 5
fgpKern, 19
fgpKern-class, 11
fgpm, 3, 11, 12, 14, 15, 18, 20–22, 24, 31, 32,

34, 37, 39, 42, 44, 45, 49–51, 55
fgpm-class, 18
fgpm_factory, 3, 7–10, 15, 20, 27, 28, 32, 34,

35, 53–55
fgpProj, 19
fgpProj-class, 27
funGp (funGp-package), 3
funGp package, 11, 14, 18, 23, 27, 55
funGp-package, 3

get_active_in, 3, 24, 27, 54

makeCluster, 14, 23
modelCall, 5, 18, 28, 54, 55
modelCall-class, 31

modelDef, 31, 57

optim, 14, 19, 32, 50

parallel package, 14, 23
plot,fgpm-method, 3, 15, 18, 33, 34, 37, 39
plot,Xfgpm-method, 3, 24, 34, 55
plot.predict.fgpm, 3, 18, 36, 39, 43, 46
plot.simulate.fgpm, 3, 18, 37, 38, 43, 46
precalculated_Xfgpm_objects, 40
predict,fgpm-method, 3, 15, 18, 24, 36, 39,

42, 46, 51

set.seed, 45
simulate,fgpm-method, 3, 15, 18, 24, 37–39,

43, 44, 51
summary,fgpm-method, 47
summary,Xfgpm-method, 48

update,fgpm-method, 3, 15, 18, 24, 49

which_on, 3, 28, 53

Xfgpm, 24, 27, 28, 53, 54
Xfgpm-class, 55
xm (precalculated_Xfgpm_objects), 40
xm25 (precalculated_Xfgpm_objects), 40
xmc (precalculated_Xfgpm_objects), 40
xmh (precalculated_Xfgpm_objects), 40
xms (precalculated_Xfgpm_objects), 40

58

	funGp-package
	antsLog-class
	black-boxes
	decay
	decay2probs
	factoryCall-class
	fgpKern-class
	fgpm
	fgpm-class
	fgpm_factory
	fgpProj-class
	get_active_in
	modelCall-class
	modelDef
	plot,fgpm-method
	plot,Xfgpm-method
	plot.predict.fgpm
	plot.simulate.fgpm
	precalculated_Xfgpm_objects
	predict,fgpm-method
	simulate,fgpm-method
	summary,fgpm-method
	summary,Xfgpm-method
	update,fgpm-method
	which_on
	Xfgpm-class
	[[,Xfgpm-method
	Index

